Robust level set image segmentation via a local correntropy-based K-means clustering

نویسندگان

  • LingFeng Wang
  • Chunhong Pan
چکیده

It is still a challenging task to segment real-world images, since they are often distorted by unknown noise and intensity inhomogeneity. To address these problems, we propose a novel segmentation algorithm via a local correntropy-based K-means (LCK) clustering. Due to the correntropy criterion, the clustering algorithm can decrease the weights of the samples that are away from their clusters. As a result, LCK based clustering algorithm can be robust to the outliers. The proposed LCK clustering algorithm is incorporated into the region-based level set segmentation framework. The iteratively re-weighted algorithm is used to solve the LCK based level set segmentation method. Extensive experiments on synthetic and real images are provided to evaluate our method, showing significant improvements on both noise sensitivity and segmentation accuracy, as compared with the state-of-the-art approaches. & 2013 Elsevier Ltd. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Detection of lung cancer using CT images based on novel PSO clustering

Lung cancer is one of the most dangerous diseases that cause a large number of deaths. Early detection and analysis can be very helpful for successful treatment. Image segmentation plays a key role in the early detection and diagnosis of lung cancer. K-means algorithm and classic PSO clustering are the most common methods for segmentation that have poor outputs. In t...

متن کامل

A Novel Approach to Simultaneous Image Segmentation and Bias Correction

This paper presents a variational level set approach to joint segmentation and bias correction of images with intensity in homogeneity. Our method is based on an observation that intensities in a relatively small local region are separable, despite of the inseparability of the intensities in the whole image caused by the intensity in homogeneity. We first define a weighted K-means clustering ob...

متن کامل

A Variational Level Set Approach to Segmentation and Bias Correction of Images with Intensity Inhomogeneity

This paper presents a variational level set approach to joint segmentation and bias correction of images with intensity inhomogeneity. Our method is based on an observation that intensities in a relatively small local region are separable, despite of the inseparability of the intensities in the whole image caused by the intensity inhomogeneity. We first define a weighted K-means clustering obje...

متن کامل

Extraction and 3D Segmentation of Tumors-Based Unsupervised Clustering Techniques in Medical Images

Introduction The diagnosis and separation of cancerous tumors in medical images require accuracy, experience, and time, and it has always posed itself as a major challenge to the radiologists and physicians. Materials and Methods We Received 290 medical images composed of 120 mammographic images, LJPEG format, scanned in gray-scale with 50 microns size, 110 MRI images including of T1-Wighted, T...

متن کامل

Robust Potato Color Image Segmentation using Adaptive Fuzzy Inference System

Potato image segmentation is an important part of image-based potato defect detection. This paper presents a robust potato color image segmentation through a combination of a fuzzy rule based system, an image thresholding based on Genetic Algorithm (GA) optimization and morphological operators. The proposed potato color image segmentation is robust against variation of background, distance and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Pattern Recognition

دوره 47  شماره 

صفحات  -

تاریخ انتشار 2014